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Abstract. The influence of ultrasonic radiation on the flow of a liquid through a porous medium is analyzed.
The analysis is based on a mechanism proposed by Gaha@vaccording to which ultrasonic radiation deforms

the walls of the pores in the shape of travelling transversal waves. Like in peristaltic pumping, the travelling
transversal wave induces a net flow of the liquid inside the pore. In this article, the wave amplitude is related to
the power output of an acoustic source, while the wave speed is expressed in terms of the shear modulus of the
porous medium. The viscosity as well as the compressibility of the liquid are taken into account. The Navier—
Stokes equations for an axisymmetric cylindrical pore are solved by means of a perturbation analysis, in which
the ratio of the wave amplitude to the radius of the pore is the small parameter. In the second-order approximation
a net flow induced by the travelling wave is found. For various values of the compressibility of the liquid, the
Reynolds number and the frequency of the wave, the net flow rate is calculated. The calculations disclose that the
compressibility of the liquid has a strong influence on the net flow induced. Furthermore, by a comparison with
the flow induced by the pressure gradient in an oil reservoir, the net flow induced by a travelling wave can not be
neglected, although it is a second-order effect.
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1. Introduction

Laboratory experiments have shown that ultrasonic radiation can considerably increase the
rate of flow of a liquid through a porous medium. For instance, Chen [1] investigated the
influence of ultrasonic radiation (at a frequency of 20 kHz) on the flow of water or oil through a
stainless steel filter, on the flow of oil through porous sandstone samples, and on the flow of oil
segments through a capillary. For the flow through sandstone samples he found that ultrasonic
radiation increased the oil-flow rate by a factor of three. Although the ultrasonic energy heated
the oil, and hence decreased its viscosity, he showed that only a part of the increase of the
flow rate could have been caused by the viscosity decrease. Chetrskiy2] measured the
permeability of core samples saturated with fresh water under the influence of an acoustic
wave field (at a frequency of ZbkHz). They measured a sharp increase of the permeability
within a few seconds after the beginning of the ultrasonic treatment. After removal of the
sound field the permeability decreased to the value before radiation. Duhon [3] studied the
characteristics of oil displacement by water in sandstone samples in the presence of ultrasound
(at frequencies of 0-55 MHz). He observed an additional amount of oil recovered of 6-15%
and an increase of the flow rate.

The oil industry has shown great interest in the effects of ultrasound on the flow through
a porous medium. The reason is that in production the oil flows due to a pressure gradient
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through a porous medium in the underground, the so-called reservoir, into a well. The effects
on flow rates observed in experiments thus reveal that ultrasonic irradiation of the reservoir
downhole in a well is capable of increasing oil production.

A theoretical explanation for the increase of the rate of flow of a liquid through a porous
medium by ultrasonic radiation has been given by Gaeteal. [4]. They propose that ultra-
sonic radiation generates travelling transversal waves at the pore walls in a porous medium.
These waves induce in the liquid inside the pores internal waves of velocity and pressure with
a nonuniform amplitude distribution along the radius of the pore. Gagti@l. [4] consider
a travelling transversal wave on the wall of a single pore (approximated by a cylindrical
tube of small radius) which is filled with a compressible viscous liquid. After carrying out
a perturbation analysis, in which the ratio of the wave amplitude to the radius of the pore is
the small parameter, they found in the second-order approximation a net flow of the liquid.
The paper of Ganieet al. [4], however, is very concise and does not report in detail the
analysis and the calculations. Gangval. only formulate the basic equations and give some
results. Furthermore, they do not analyse the influence of the acoustic power output and the
material properties of the porous medium and the liquid.

The proposed mechanism of Ganahal.[4] is identical to the peristaltic transport mecha-
nism. Peristaltic pumping is often used in medical instruments such as the heart-lung machine.
It frequently occurs in the organs in the living body like the ureters, intestines and arterioles.
In peristaltic pumping a travelling transversal wave generated along a flexible wall propels the
liquid along a tube. In peristaltic pumping, however, usually the transport of incompressible
liquids is described. Various papers have been written about peristaltic transport, see for in-
stance Shapiret al. [5], Yin and Fung [6], and Takabatalat al. [7]. In particular, Yin and
Fung [6] studied the flow of an incompressible viscous liquid through a cylindrical tube with
its wall deformed in the shape of a travelling transversal wave. After making their dimension-
less, they found three relevant dimensionless paramefters,= a/R, o = 27 R/), and the
Reynolds number Re- Rcp/u. Here,a is the amplitude of the wave® is the radius of the
tube, 1 is the wavelength, andis the wave speed, while is the density ang the viscosity
of the liquid. Like Ganieet al.[4], Yin and Fung [6] carry out a perturbation analysis with
as small parameter. Later, Takabat&kel. [7] mention that the perturbation analysis of Yin
and Fung [6] is only valid if the dimensionless parametgks and Re satisfya? Re « 1.

In this article we elaborate the mechanism proposed by Ganah{4], in order to analyze
the influence of ultrasonic radiation on flow through porous media. Although natural porous
media are a random network of interacting capillaries of variable cross-section, we use a sim-
plified representation in which the porous medium consists of a set of noninteracting, straight
and circular capillaries in an elastic medium. We consider a flexible axisymmetric cylindrical
pore of radiusR, with its wall deformed by the application of ultrasound in the shape of a
travelling transversal wave of constant amplitudelhe pore is filled with a compressible
viscous liquid which is at rest in the absence of the travelling wave. We render our problem
dimensionless and carry out a perturbation analysis for small ratios-af/R. In the second-
order approximation a net flow induced by the travelling wave is found. Actually, we extend
the analysis of Yin and Fung [6] by taking the compressibilityf the liquid into account.

As a result we obtain, in addition tg o and Re, a fourth relevant dimensionless parameter,
viz. x = kpoc?, where pg is the (constant) density at a reference pressure. Although the
compressibilityx is small, the dimensionless paramejetas a magnitude of order 1 for
the flows considered. Calculations for various valueg,of, Re andy, disclose that the
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Figure 1. The cylindrical pore with its wall deformed in the shape of a travelling transversal wave.

compressibility of the liquid has a strong influence on the net flow induced. Hence, although

the liquids considered are hard to compress, their compressibility may not be neglected.
Finally, we give an estimation of the dimensionless parameter ultrasonic radiation

of a reservoir downhole, and compare the net flow induced by a travelling wave to the flow

induced by the pressure gradient in the reservoir. To that end, we express the wave amplitude

a in terms of the power outpu® generated at the source, and we relate the wave gtedtie

shear modulug; of the porous medium. By means of an example, in which we fake 10

kW andG = 0.5 x 10° N/m?, we show that has a magnitude of order 19in the reservoir

near the well (the so-called near-wellbore region), while the wave spiseof order 16 m/s.

Thus, a perturbation analysis wittas a small parameter is permitted. With a frequency in the

order of 18 Hz and a pore radius in the order of fn, the wavelength is in the order of

102 m, while the Reynolds number is in the order of 11d the example we demonstrate that

the net flow rate due to a travelling wave with small dimensionless amplitude is of the same

order of magnitude as the Poiseuille flow rate due to the pressure gradient in the reservoir.

Hence, although the net flow induced by travelling waves is an effect which is proportional to

€2, this effect cannot be neglected in the flow through a reservoir.

2. Formulation of the problem

A flexible axisymmetric cylindrical pore of radiuB is considered. The wall of the pore is
deformed in the shape of a travelling transversal wave with constant ampliti@gdindrical
coordinateqr, 0, z) are introduced with the-axis along the centerline of the pore. With the
wave travelling along the-axis, the wall- = W (z, r) of the pore takes the form

W(z,t) =R +a cos(zTn(z — ct)) , (2.2)

wherea is the wavelength andis the wave speed; see Figure 1.
A compressible viscous liquid is flowing through the pore. The flow is governed by the
balance of mass

ap

5y TV (Vv =0 (2.2)

and the Navier—Stokes equation

ov

o7 4+ p(v- V), (2.3)

_Vp + VA 4 %V(V V) = p

which represents the balance of linear momentum under neglect of gravity for a so-called
Stokes fluid. Herep is the liquid density,p the pressurey the liquid velocity andu the
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viscosity of the liquid. The characteristic response of the liquid to a compression is described
by the constitutive equation
1d
__p — K, (24)
p dp

wherex is the compressibility of the liquid.
With the flow parameters independent of the azimuthal coordéhdbe velocity takes the
form

V=u,(rz, 06 + v,z 1)e, (2.5)

wheree, ande, are unit vectors in the positive andz-direction, respectively. At the boundary
r = W(z,t) the liquid is subjected to the motion of the wall. The no-slip boundary condition
at the wall thus requires

ow
v,(W,z,t) = FTR v, (W,z,t) =0. (2.6)

The solution of (2.4) for the density as function of the pressure is given by

p = po explx(p — po)l, (2.7)

wherepg is the (constant) density at the reference presgyrén cylindrical coordinates, the
balance of mass (2.2) reads

ap ap ap v, v, Jv,
— 4+ v— — —+ — =0 2.8
8t+v8r+vzaz+p<8r+r+az (2.:8)

while the Navier—Stokes equation (2.3) becomes

0 v, 1dv, v 0%, 0 [dv, v, Ov
s L

or ar2 " rar  r2 ' 972 3or|or  r ' 8z
v, v, v,
== + r T + ~ ) 2'9
P p(v 2 vzaz> (2.9)
ap dv, 1ladv, v, wa [dv, v Oy
0z +M<8r2+r 8r+822 +3az or r 9z

0 a a
or

Finally, the flow rateQ through the pore is given by
Wi(z,1)

0=0(1)= 271/ v, (r, z, t)r dr. (2.10)
0

The equations are made dimensionless by scaling length &yd time byR/c. Further-
more, we introduce the dimensionless variallés= W/R, p = p/po, Ur = v, /¢, U, = v, /c,
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P = p/poc?, po = po/poc?andQ = Q/cR?, and the four dimensionless parameters, Re
andy given by

27T R R
2, oa=——, Re= foc . X = Kkpoc?. (2.11)
R A nw

Henceforth, we will omit the tildes without ambiguity. Then the Equations (2.9) turn into their
dimensionless form, reading

ap n 1 /d%v, 1ldv, v, 8%, 1 9 [dv, v v,
ar Re\ 9r2 " r or r2 972 3Redr | oar  r 0z
v, v, v,
= — — ), 2.12
pat+p(v 8r+vzaz> (2.12)

ap 1 (3%, 1dv, 3%, 1 0 [dv, v Ov,
or r 0z

9z Re\ 972 " 7 or 072 9z

3Redz
v, av, av,
—,Oat +p<vrar+vzaz>a

while Equation (2.7) turns into its dimensionless form, reading
p = expx(p — po)l- (2.13)

The balance of mass (2.8) in terms@fv, andv, remains the same after scaling, and also
holds for the dimensionless variablgsv, andv,. The boundary conditions (2.6) fer and

v, atr = W remain the same after scaling, and also hold for the dimensionless variables
andv, at7 = W, where W in its dimensionless form reads

W(z,t) =1+ n(z, 1), n(z,t) := ¢ cosa(z —t). (2.14)
Thus, the boundary conditions in their dimensionless form read

an(z,t)
or

v (L+n(z,1),z,1) = v,(1+n(z,1),z,t) =0. (2.15)
Relation (2.10) which defines the flow ragein terms ofv, and W remains the same after
scaling, and also holds for the dimensionless variableg. andW. The parameter Re is the
Reynolds number. The numbgfy = c,/kpo represents the ratio of the wave speesh the
pore wall, andq := 1/, /kpo is the speed of sound in the liquid. For the relatively small wave
amplitudes considered here we have 1.

3. Method of solution

To illustrate the nature of the solution we shall consider the important case of no flow in
absence of the travelling wave. As a consequence, the pregdsarequal to the reference
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pressurepg, if ¢ = 0. Therefore, we assume solutions for the pressure, velocity and density in
the form

p = po+epi(r,z,t) +2pa(r,z, 1) + - -,

v = euy(r,z,t) + 2ux(r, 2, ) + - - -, (3.1)
v, =¢evi(r, z, 1) + 82v2(7’, )+,

p=1+¢e01(r,2,1) +82,02(I”,Z,t) + -

Notice that Yin and Fung [6] have included a zeroth-order constant pressure grasj@ds d
in their solution for an incompressible liquid, so that the axial velogitgontains the zeroth-
order term

Vor) = ———(1 —r9). 3.2
o(r) 7 d: 1-7r9) (3.2)
The calculations in [6], however, were carried out fepddz = 0. Substituting the expansions

(3.1) in (2.8), (2.12) and (2.13), and equating the coefficients of equal powersroboth
sides of the equations, we obtain the following sequence of equations:

apl i 1 321/!1 18111 ui azul
ar Re\ ar2 r or r2 = 9z2

1 0 (Juy w1 Jv
+ {1+1+l

3Redr | ar | r z

1
— | —+- — 3.3
0z Re\ dr2 +r or + 812> 33)
" 1 0 duq Uy o0vy . vy
3Redz | ar  r 8z | ar’
8,01 3l/t1 ui 8vl _ 0’

op1 1 (azvl 19v; 0%

- + — — :
ot or r 0z 1= XP1

apz 1 82u2 lauz us 82u2 1 0 Buz Uus E)vz
or + Re(ar2 +r ar r? + 072 +3Rear +

or | r | oz
3Lt2 Bul Bul Bul
o TP T T
apz 1 821)2 131)2 32112 1 o Buz Uus 31)2
B Ty L R [ 3.4
0z +Re(8r2+r8r+8z2 +3Reaz 8r+r+82 (34)
31)2 avl 4 avl avl
= — tur— +v1—,
ar o T Yoz
0 ou u dv ou u dv 0 0
£+_2+_2+_2+pl l_|__1+ L lﬂ‘f’vlﬂ:q
ot or r 0z d r 0z
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p2 = xp2+ $x%p%:

etc. We represent the boundary conditions (2.15) by a Taylor expansion aretifdi.e.

v, 2(z,1) 3%v, .
0Lz, 0+ D@ 2 + LDV gy 2 ea sinaz— 1),
or 2 or2 (3.5)
nz(zv t) azvz

0
vxLzJ>+n@J»£aLzJ>+ Lzt)+--=0

2 9r?

Substituting expansions (3.1) in (3.5), and expressing cos and sin in exponential powers, we
obtain the following sequence of boundary conditions

ui(l,z,t) = — % (eia(z—t) . e_ia(z_t)) ’
j i 0
ux(1,z,t) + % (elol(z—t) + e—mt(Z—t)) %(1’ 20 =0, -
B
vl(la Z, t) = 0’

. ‘ ad
oLz 1) + 3 (€767 + €7 ) SR 20 = 0,

Finally, we represent the flow rat@ by a Taylor expansion around= 1, and obtain by use
of boundary condition (3.68)

1

1
Q(z,t) =2r [8/ vi(r, z, t)r dr +52/
0

vo(r, z, H)r dr + 0(83):| . (3.7)
0

Examination of Equations (3.3)—(3.6) shows that a solution can be chosen in the form
uy(r, z, 1) = Ur(r) €70 + Uy(r) /“",
vi(r, 2, 1) = Va(r) €0 4 Vi(r) e, (3.8)
pi(r, 2, 1) = Pi(r) €470 + Py(r) €90,
p1(r, 2, 1) = x PL(r) €70 + x Py(r) e,

and
up(r, z,1) = Ugg(r) + Ua(r) €C70 + Tp(r) €241,
Vo(r, 7, 1) = Vao(r) + Va(r) €D 4 Vy(r) e 2¢G=0, (3.9)
p2(r, z,1) = Pao(r) + Pa(r) €0 4 Py(r) 72471,
pa(r, z,1) = Dao(r) + Da(r) €%~ + Dy(r) €21,

Here, the overbar denotes the complex conjugate.
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Substituting (3.8) in (3.3) and (3.6), we obtain the following set of equations:

Py t(yry Y U o) L d U+U+ 1% iU
— — — - — -« —_— io = —iaUy,
1" Re\™? r r2 ! 3 Redr 1 ! !

. 1 , Vi 5 io , Ul )
—iaPi+ |V +—=—a"V1 *3Re U+ — +iaVy) = —iaVy,
r r

Re 3
U
U+ = +iaVy = iax P, (3.10)
r
U.(1) = _?, Vi) =0

The set of equations fdv,, V; and Py is conjugate to (3.10), so that it need not be written out
explicitly. Firstly, the system of equations (3.10) is solved. Substitution of (3ihQ(B.10)-2
yields

—y P+ <Uf + -t - —21 — ,32U1> =0, (3.11)

i ” VJ{ 2
_VP]_—— V1+——ﬁvl =
o r
where the (complex) parametersandg are given by

ioy

y =Re— —=, p? =a?—iaRe (3.12)

With V; eliminated by means of (3.10)we rewrite (3.1 as
P
_ix <P1” —= <ﬁ + )Pl)
07
1 d 1\([ , U U
t5 (gt ) (Ui AU =0
dr r2

Differentiating (3.13) with respect to and using (3.1%)to express the derivatives & in
terms ofU; and its derivatives, we are led to the following equation

_i_X d_2_|_}£_1 ﬂ_|_a_yl U”_{_Z_ﬂ ﬂU
ay \dr2  rdr r? X 1 r2 !

1/d® 1d 1\(,, U U ,

(3.13)

(3.14)
a2 rdr 2

This equation is rewritten, after multiplication ko, as

® 1d 1 ,N\/d® 1d 1
B<W+;d—r—r—2—l))(@—F;d—r—r—z—ﬂ)l}l—o, (315)
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where the (complex) parameteBsandv are given by

: 2_ .2
Bo1-X  a_gp P (3.16)
y B
By use of (3.12), expression (3.16) fois written in terms oty, Re andy as
1—x)Re— %i
)2 = g2 E T W Re— glax. (3.17)

Re— %iax

Notice thatv = « for x = 0, i.e.for incompressible liquids. The solution féf, with Uy (r)
regular inr = 0, is given by

Ui(r) = C1l1(vr) + C2I1(Br), (3.18)

where I is the modified Bessel function of the first kind of order 1, afidand C» are
(complex) constants. Substitution of (3.18) in (34ylields

y P{(r) = C1(v? — B L1 (vr). (3.19)

By use of the propertys(z) = I)(z), wherely is the modified Bessel function of the first kind
of order 0, it is easily seen that

1)2_132

Pi(r)y=C3+C, Ip(vr), (3.20)

vy

whereCz is a (complex) constant. Substituting (3.18) and (3.20) in (8,18)d using the
propertyl;(z) + I11(z)/z = Io(z), we obtain
iaC

i BC
Lo(or) + iBCs
v o

Vi(r) = Io(Br) + xCa, (3.21)

where (3.12) and (3.17) have been useddf@ndv. Finally, by putting (3.20) into (3.1%)we
deduce that

C3=0. (3.22)
The boundary conditions (3.1 then require

_ apvilo(B) co— —aiIo(v)
20210 [1(B) — Brlo(BY L] 2 2Aalo(v)1(B) — Brio(B) (W]’

Cy (3.23)

Thus, the first-order approximation of the velocity and pressure is described by Equations
(3.18) and (3.20)—(3.23).
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On inserting (3.9) into (3.4) and (3.6), we obtain the following set of equations:
1 U, U20 1 d UZO
_P/ " ~20 U/ —4v
20+ Re <U2°+ >+3Red { T }

= iax PyU; — iay PLUy + UyU; 4 UyU; — iaViUp + ia V1 Uy,

1 |74 _ — -
R_e (VZ//O+ %) = iO{XV1P1 — iO[)(Plvl + U1Vl/ + U1V£,

U. — PU; PU . —
Ujpo + i’ = —x (PlUi +PU + =+ 22 L U P U1P1’> , (3.24)

Do = x Poo+ x%P1 Py,
Uzo(1) + 20U (D) + 3U7(1) = 0, Vao(D) + V() + 3V((D) =

It will be seen later that, as far as the net flow is considered, only the fundtiefsV-o,

P»o and Do participate in the solution, as long as terms upt@?) are retained. Thus, the
functionsU,, V,, P, and D, do not contribute to the net flow, and therefore, we shall not write
down the equations that these functions satisfy, nor solve them. We continue with the solutions
for Pyg, Vog andUsx. To that end, we rewrite the Equations (324 as

4 Uy, Uso
— Py + IRe <Ugo 20 7):F,

/

Vo
V3o+ 2 = ReG, (3.25)

U
U20+ i) = —xH,

where the functiong', G andH, corresponding to the right-hand sides of (3'24), are given
by

F =iay (PyUy — PiUy) + U U; + UrUg + i (ViUy — ViUy)

1d —
G = =— {r(iUy + V1Up}, (3.26)
rdr

1d — =
H=-— {r(PLUL+ P1UD}.

Here, Equation (3.18)is used to eliminateP; in function G. With H given by (3.26] it is
easily seen that the solution fokg is given by

D _ _
Uso(r) = 71 — % (P UL(r) + Pi(r)Us(r)) (3.27)
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where the (complex) constait; follows from the boundary condition (3.24)Elimination
of U; by means of (3.18)and by use of (3.16¥ leads to

D1 =0. (3.28)

Notice thatU,q = 0 for x = 0, i.e. for incompressible liquids. Witk given by (3.267, it is
easily seen that the solution f&bg, with Vxo(r) regular inr = 0, is given by

1
Voo(r) = Do — Re/ [Vi(»)U1(y) + Vi(y)Ui(y)] dy. (3.29)

Here the (complex) constall, = V,q(1), whereVa(1) is given by (3.24), equals

. o e o
lazc Lh) - lﬁz €21+ 2wy + L2y B, (3.30)
o 2 20

Finally, it is easily seen that the solution ffg is given by

D,=—

4 r
Pao(r) = D3 — 3—;§EH(r) - /0 F(y)dy. (3.31)

Here, the (complex) constams = P,(0) + 4x H(0)/3 Re follows from a given pressure
P>0(0) on the centerline of the pore. Elaboration#t0) yields

2 _ p2 2 _ Rp2
MNP e B + P Cl(vC1+,BC2)] (3.32)

D3 = Py(0) + —— |:

3Re vy

Next, the net flow is considered which is the flow averaged over one period of time. To that
end, we introduce the average of a variaplever one period 2/« of timer as

o 21 /o
(g) = —/ g(r,z, 1) dt. (3.33)
2 0

Consequently, the net axial velocity,) reads
(v;) = eVao(r), (3.34)
under neglect oD (¢3)-terms, while the net flow rat&D) is given by
1
(Q) = 2n52/ Voo(r)r dr, (3.35)
0
under neglect oD (¢3)-terms. Thus, the travelling wave induces a net flow of the liquid, of

which the (dimensionless) rate is expressed by (3.35). Hence, the net flow is an effect of order

&2.

4. Numerical results

To study the behavior of the net flow, numerical calculations for several valugsagfRe
and x are carried out. Firstly, we concentrate on the solution of the dimensionless problem
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as described in the previous section. The condition for the solution presented by the formal
expansions (3.1) to be accurate, is that Re « 1 according to Takabatake [7].

We consider the net flow rat@®) given by (3.35). After one integration by paft@) can
be expressed as

1
(Q) = me? <D2 —Re / r2[Va(r)Us(r) + Vi(r)Us(r)] dr) : (4.1)
0

where the solution (3.29) fdryg is used.
For incompressible liquids we compare the net flow K&@¢ to the net flow ratg given
by Yin and Fung [6, formula (54)]. Elaboration of the results of [6] yields

2 M
- 2 aR62 Bj
il s P Py reE o) & “2

where the constantsand B; are given in Table 1 and 2 of [6]. Notice that the constagitn
[6] is set to zero. For instance, fer= 0-15, Re= 100 andx = 0-2 we obtain{Q) = 0-2709
andg = 0-2708. More calculations disclose that fgr= 0 our results correspond to the
results of Yin and Fung [6].

In Figure 2 the net flow ratéQ) is plotted versusy, for ¢ = 0-001,« = 0-001, and
Re = 1000 (dashed-dotted curve), Re5000 (dashed curve) and Re10,000 (solid curve).
We observe that the range 0f) is approximately M1-1.26 x 10~° if Re = 1000, 015—
1.68x 107° if Re = 5000 and 49-264 x 107° if Re = 10,000, for 0< x < 1. In particular,
for x = 0 the range of Q) is just 1.24-126 x 10~° for the three values of Re considered,
while for ¥ > 0 the range becomes01-264 x 10°°. Hence,(Q) is nearly independent of
Re, for x = 0. More precisely, the calculations disclose the reg@lt ~ 4rs?, for o <« 1
and xy = 0. Fory > 0, however,(Q) strongly depends on Re. Furthermore, we observe
that for Re= 1000 the net flow rat¢Q) decreases with increasing For Re= 5000 and
10,000, on the other han¢) attains a maximum of-Z x 10~ at y = 0-2 and 27 x 10~° at
x = 0.5, respectively. Thus, the compressibility numkehas a significant influence on the
net flow rate, and the Reynolds number Re plays a more significant role in the net flow of a
compressible liquid than of an incompressible one.
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Figure 2. The (dimensionless) net flow rgt@) ver- Figure 3. The (dimensionless) net flow rat@) ver-

susy, for ¢ = 0-001,« = 0-001, and Re= 1000 susa, for ¢ = 0.001, Re= 10%, andy = 0.0 (solid
(dashed-dotted curve), Re 5000 (dashed curve) and  curve), x = 0-3 (dashed-dotted curve), = 0-6
Re= 10,000 (solid curve). (dashed curve) angd = 0-9 (dotted curve).
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Figure 4. The mean net axial velocity¥;) (in cm/s) versus the frequengy(in kHz), forx = 0-5x 109N"1m2,
w =05 x 1072 Nm~2s, pg = 103 kg/m®, R = 1074 m anda = 10~ m, for ¢ = 600 ms ! (dashed curve),
¢ = 800 ms1 (dotted curve)¢ = 1000 ms 1 (solid curve) and: = 1200 ms 1 (dashed-dotted curve).

In Figure 3 the net flow rateQ) is plotted versug, for ¢ = 0-001, Re= 10%, andy = 0.0
(solid curve),x = 0-3 (dashed-dotted curve), = 0-6 (dashed curve) ang = 0-9 (dotted
curve). We observe that the range(df) is approximately 112—-125 x 107°if y = 0, 099—
229 x 10°if x = 0.3,029-628 x 10° if x = 0-6 and 009-1706 x 107°if x = 0.9, for
0-0004 < a < 0-01. Furthermore, ify = 0-3 or 06, then(Q) attains a maximum for a certain
value ofa, and this maximum increases with increasjng-or x = 0, on the other handQ)
is decreasing with increasing More precisely{ Q) is nearly independent of, which again
corresponds to the calculated resilt) ~ 4r¢?, fora « 1 andy = 0. Fory = 0.9, the net
flow rate increases with increasiiag

Next, we return to the dimensional flow problem, as described in Section 2. The dimen-
sional net flow rate/Q) is equal to the dimensionless net flow ra®) as given by (4.1)
multiplied by the factor:R?. In addition, we define the dimensional mean net axial velocity
(V2) as

(0)
where(Q) is the dimensional net flow rate, andk? denotes the mean cross-sectional area of
the pore. The amplitudg , of the dimensional pressure waye= poc’(ep1+ O(£?)), where
p1is given by (3.8), is defined as

Ap(r) = 2poc?e/[Re{ P1(r)}2 + Im{ Pi(r)}]2. (4.9)

The maximum value of this amplitude is defined as the norm,dhat is|| p|| := max.cjo.1
4 ,(r). Calculations disclose that the distribution.6f (r) is nearly uniform along the radius
r of the pore, which has also been found by Gareal. [4].

We consider the case in which the pore has raftius 10~ m, and the wave has amplitude
a = 107" m. The properties of the liquid are given py = 10> kg/m?®, k = 0-5x 1079 N~m?
andu = 0-5 x 1072 Nm~2s. The frequency of the wave is related to the wave speeand
the wavelengtfi according to

c=Af. (4.5)
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Table 1.The frequency fmax at which the maximum of
(V;) is attained, the maximunV;)max itself, the correspond-
ing net flow rate (Q)max and norm | p| of the pressure
wave, for R = 107%m, a = 10 'm, pg = 10°kg/m?,
w=05x10"2Nm—2s andc = 0-5 x 107IN~1m2.

c Jfmax (Vz)max (Q)max llpll
(m/s) (Hz)  (cmis) (mms)  (x1°PNm—2)

600 960 034 011 14
700 1110 046 015 20
800 1400 064 020 29
900 1590 ™1 029 42
1000 2390 137 043 61
1100 3680 25 071 92
1200 7640 42 139 151

For various values of the wave speedve calculate the mean net axial velocity,) as a
function of the frequencyf. Thus,s = 0-001 is constant, Re= pocR/p and x = kpoc?
increase with increasing while @ increases with increasing according tax = 27t Rf/c =
6-28 x 1074 f/c for the various values af considered. In Figure 4 the mean net axial velocity
(V.) (in cm/s) is plotted versug (in kHz), for c = 600 ms* (dashed curve); = 800 ms?!
(dotted curve)¢ = 1000 ms* (solid curve) and: = 1200 ms? (dashed-dotted curve). We
observe that the range o¥,) is approximately @6 — 0.34cm/s ifc = 600ms?, 0-47—
0.64cm/s ifc = 800 ms?, 0.67-137cm/s ifc = 1000 ms?, and 043—-442cm/s ifc =
1200 ms?, for the values off considered. FurthermoréV,) attains a maximum for a certain
value of /. In Table 1 the frequencymax at which the maximum ofV,) is attained, the
maximum(V,)max itself, the corresponding net flow rat@)max and norm|| p|| of the pressure
wave are given. We observe thatax as well as the corresponding mean net axial velocity
(V,)max iNcreases with increasing wave speed

5. Discussion

In order to analyze the influence of ultrasonic radiation on the flow of oil through a reservoir,

we assume that the deformation of the pore walls is caused by excess pressure waves generated
by an acoustic source. The source is placed in the well at a distafioen the oil reservoir,

where the oil has compressibility, densitypg at reference pressugg), and viscosityu. By

radiation from a simple source in radial direction the excess pregsureg generated in the

oil reads, in the linear theory of sound and under neglect of gravity and viscosity,

1 ,OoCoP
! , 5.1
P = po h 2 6-1)

provided that: >> A/2m; see Lighthill [8, Section 1.12]. Here, is the average power output
generated at the acoustic source, ane- 1/, /kpo is the speed of sound in the oil. Since the
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porous medium is elastic, the displacemerdf the pore wall due to the excess pressure is
given by

(p — po)R
a=—7

o (5.2)

under the assumption that the pores are sufficiently far away from each other; see Jaeger and
Cook [9, Section 5.11]. Heré; is the shear modulus of the porous medium. By a combination
of (5.1) and (5.2), an estimation for the ratic= a/R is given by

1 ,OoCoP
&= —= .
2hG\V 2x

(5.3)

Notice that according to (5.3) the net flow rat@) is proportional to the power outpuR,
since the net flow is an effect of ordef. Furthermore{Q) is proportional to /2, so that
the effects of ultrasonic radiation in radial direction are expected to be laeahainly in the
near-wellbore region. If the radiation of the source is ductee-dimensionallyon the other
hand, the acoustic excess presspre pg is independent of the distande and the power
output is much more efficiently generatexd; Lighthill [8, Section 1.4].

The wave speed on the pore wall depends on the compressibilitgf the liquid as well
as on the distensibilityd of the pore. Lighthill [8, pp. 93] defines the wave speed as

1
= ——, 5.4
po(k + D) (5.4)
where the distensibility is given by
D— (Ed_A> , (5.5)
A dp P=Po

Here, A denotes the cross-sectional area of the pore. Witk 7 (R + a)? anda given by
(5.2), the cross-sectional area can be expressed in terms of the excess pressure as

2
P — Do
A=nR?*(1 5.6
T (+ 2G> (5.6)

Substitution of (5.6) in (5.5) gives

1

D= G (5.7)
Notice that, sinceD > 0 andco = 1/,/kpo, the wave speed according to (5.4) satisfies
c/co < 1,s0thaty = c?/c = k/(k + D) < 1. Thus, by means of (5.3) the wave amplitude
is related to the power output generated at the acoustic source, while by means of (5.4) and
(5.7) the wave speed on the pore wall is expressed in terms of the shear modulus of the porous
medium.

As an example, let the power output generated at the acoustic sourBe=bel0 kW,
while the source is placed at a distarice= 0-05 m from the reservoir. For the properties
of the oil we takepy = 800 kg/n? andx = 0.7 x 10°°N~In?, so thatcy = 1336 m/s.
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By substitution of the values in (5.1) we obtain an excess pressure generated by the acoustic
source ofp — pp = 82 x 10° Nm~2. For a sandstone the shear modulus is approximately

G = 0-5 x 10° Nm~2. As a result, the ratio of the wave amplitudeo the pore radius is

given bye = 0-82 x 1073,

By substitution of the values in (5.4) the wave speed of the travelling wave-i§80 m/s,
where D = 2% 10°9N~!m? is used. As a result, the dimensionless parametet c?/c3
becomesy = 0-26. Let the frequency of the acoustic source, and thus of the travelling wave,
be equal tof = 20kHz, then the wave length is= ¢/f = 0-034 m. Finally, let the pores
of the reservoir have a radius & = 0.5 x 10~ m and the oil have a viscosity @f =
5 x 10~3Nm~2s. Then the dimensionless parametets 2 R/ and Re= pocR /11 become
a =923 x 1073 and Re= 5443.

Calculations for the specific values disclose a net flow ratgdof= 0.223 x 10-1°m?/s.

As already observed, the net flow rate induced by the travelling wave is small. However, this
flow rate is of the same order of magnitude as the flow @aigs of the Poiseuille flow through
the pore induced by the pressure gradiemtdt in the reservoir, which is given by

dp T R*

QPois: d_Zm (5-8)

Therefore, in an oil reservoir a typical value of the pressure gradigupigdz) = 10° N/m?2.

By substitution of the specific values in (5.8), we arrive(alys = 0-491 x 107*m?/s, so

that (Q) ~ 0-45 x Qpois in our example. Thus, although the net flow induced by travelling
waves is an effect which is proportional 3, this effect cannot be neglected in the flow
through an oil reservoir. Notice that the flow rafks strongly decreases with decreasing

R, while the net flow ratd Q) induced by a travelling wave is not that sensitive to the pore
radius. Furthermore, in order to analyse the net flow induced if a Poiseuille flow is already
present when the acoustic source is off, the zeroth-order veltgiccording to (3.2) must

be included in the solution.
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